↳ Prolog
↳ PrologToPiTRSProof
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ORDERED_IN_G(.(X, .(Y, Xs))) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U3_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_G(X, Y, Xs, le_out_gg(X, Y)) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ORDERED_IN_G(.(X, .(Y, Xs))) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U3_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_G(X, Y, Xs, le_out_gg(X, Y)) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(Y, Xs, le_in_gg(X, Y))
U1_G(Y, Xs, le_out_gg) → ORDERED_IN_G(.(Y, Xs))
le_in_gg(s(X), s(Y)) → U3_gg(le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U3_gg(le_out_gg) → le_out_gg
le_in_gg(x0, x1)
U3_gg(x0)
The following rules are removed from R:
U1_G(Y, Xs, le_out_gg) → ORDERED_IN_G(.(Y, Xs))
Used ordering: POLO with Polynomial interpretation [25]:
le_in_gg(s(X), s(Y)) → U3_gg(le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U3_gg(le_out_gg) → le_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(0) = 1
POL(ORDERED_IN_G(x1)) = x1
POL(U1_G(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U3_gg(x1)) = 1 + 2·x1
POL(le_in_gg(x1, x2)) = x1 + x2
POL(le_out_gg) = 2
POL(s(x1)) = 2 + 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(Y, Xs, le_in_gg(X, Y))
le_in_gg(x0, x1)
U3_gg(x0)